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Abstract 

Intercellular cross-talk is a fundamental process for spreading cellular signals between neighbouring 

and distant cells to properly regulate their metabolism, to coordinate homeostasis, adaptation and 

survival as a functional tissue and organ. In this review, we take a close molecular view of the 

underpinning molecular mechanisms of such complex intercellular communications. There are 

several studied forms of cell-to-cell communications considered crucial for the maintenance of 

multicellular organisms. The most explored is paracrine signalling which is realised through the 

release of diffusible signalling factors (e.g., hormones or growth factors) from a donor cell and taken 

up by a recipient cell. More challenging is communication which also does not require the direct 

contact of cells but is organised through the release of named signalling factors embedded in 

membranous structures. This mode of cell-to-cell communication is executed through the transfer of 

extracellular vesicles. Two other types of cellular cross-communication require direct contact of 

communicating cells. In one type, cells are connected by gap junctions which regulate permeation of 

chemical signals addressed to a neighbouring cell. Another type of cell communication is organised 

to provide a cytosolic continuum of adjacent cells joined by different tiny cell membrane extensions 

coined tunnelling nanotubes. In this review, we consider the various cell communication modes in 

the heart, and examples of processes in non-cardiac cells which may have mechanistic parallels with 

cardiovascular cells.
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Introduction

Clinicians are normally occupied with the disease and ageing of their patient at systems 

level, however they are also aware that intercellular cross-talk is fundamental for spreading cellular 

signals to share information between neighbouring and distant cells to properly regulate their 

metabolism, according to changes in localised physical and chemical stresses, and to coordinate 

homeostasis, adaptation and survival as a functional tissue and organ. In this review we take a close 

molecular view of the underpinning molecular mechanisms of such complex intercellular 

communications.

There are several studied forms of cell-to-cell communications considered crucial for the 

maintenance of multicellular organisms, and these may have particular importance for the 

functional roles of stem cells in tissues. The most explored is paracrine signalling which is realised 

through the release of diffusible signalling factors (e.g., hormones or growth factors) from a donor 

cell and taken up by a recipient cell. This type of communication involves a simple release of factors 

into the ambient environment and subsequent interaction with a membrane receptor or channel 

protein. For example, the release of cytokines such as transforming growth factor β (TGFβ) and 

growth factors such as fibroblast growth factor (FGF2) into the extracellular space by cardiac 

fibroblasts and myocytes which promote activation of the inflammasome, fibrosis and hypertrophy 

in the heart [1,2]. 

More challenging is communication which also does not require the direct contact of cells 

but is organised through the release of named signalling factors embedded in membranous 

structures. This mode of cell-to-cell communication is executed through the transfer of extracellular 

vesicles (EVs) [3], and involves formation of vesicles by a donor cell with subsequent release of 

vesicles into the extracellular space and absorption by a recipient cell. Such vesicles shuttle bioactive 

particles, proteins, lipids, metabolites and different types of nucleic acids such as DNA, mRNA, and 

microRNA [4-6]. Ribosomes may also be transferred using an exosomal vehicle [7,8]. In early studies, 

these vesicles were considered to be remnants of dead cells not playing an essential role, however 

subsequently all of these, some as small as 30 nm in diameter, were found to have biological roles 

with the potential to heal or to kill the recipient cells [9]. The size of vesicles varies from 30 nm to 1 

m. The smallest vesicles (30–100 nm) belong to the class named exosomes and larger particles 

(100–1000 nm) are generally named microparticles, although this classification of these vesicles by 

size is not strict. These two classes are different by their origin: while exosomes are formed in 

endosomal pathway, microparticles are the result of the cell budding. Extracellular vesicles play an 
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important role in the regulation of different physiological and pathological processes, thus 

participating in the development and progression of many diseases [9]. Extracellular vesicles, 

especially those produced by stem cells, cancer cells, immune cells, blood cells, and nervous system 

cells have become a hot study topic over recent years. The analysis of physiological fluids for EVs has 

become a diagnostic approach for different pathologies, including cardiovascular [10-12]. Notably, 

exosomes derived from stem cells can carry protective factors which can heal heart damage [13,14]. 

We will discuss this in detail below.

Two other types of cellular cross-communications require direct contact of communicating 

cells. In one type, cells are connected by gap junctions which regulate permeation of chemical 

signals addressed to a neighbouring cell, thus establishing electrical and mechanical synchronisation 

[15]. Such gap junctions can be organised by a channel with a size up to 1.5–2 nm permeable for 

solutes to about 1 kDa [16] including ions, oxidisable metabolites, adenine nucleotides, peptides and 

microRNA [17-19]. Some of these compounds (such as glucose) serve as a fuel [18], ions can regulate 

gating [20,21] and microRNA may be involved in a wide spectrum of activities with binary outcome. 

They may yield either positive effects; i.e., as shown for stem cell-derived microRNA-133a which can 

contribute to the activation of healing in infarct tissue [22] or similarly for microRNA-26a [23]; or 

they may cause negative effects; i.e., loss of miR-29 causing adverse fibrosis in the post-infarcted 

heart [24]. Examples involving microRNA demonstrate how the same communication transfer 

mechanism can provide both healing and killing functions depending on the changes of intercellular 

fluxes of vital components, and emphasises the regulatory importance of such a mechanism.

In contrast to gap junctions which provide an electrical continuum between cells, there is 

another type of cell communication which is organised to provide a cytosolic continuum of adjacent 

cells joined by different tiny cell membrane extensions. The first observation of organisation of the 

cell-to-cell channelling was made using a scanning electron microscope which showed that PC12 

cells communicate by extended cellular formations coined tunnelling nanotubes (TNTs) [25]. 

Transmission electron microscopy showed that these extensions are organised by plasma 

membranes of neighbouring cells with two cytosolic contents being organised as a continuum 

without any structures inside which could limit exchange between cells, aside from the diameter of 

the nanotube itself. Sequentially, two contacting cells have not only an aqueous but also 

membranous continuum allowing the exchange with water soluble agents and lipid-soluble material 

through lateral diffusion along membranes. The transmitting chemical signal or a cargo (lipid 

droplets [26], vesicles or organelles [27]) are thought to be transported either passively by diffusion 

or as in case of a cargo transportation, by an active transport machinery. The last one often involves 

cytoskeletal elements such as F-actin in TNTs smaller than 100 μm in diameter and both F-actin and 
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microtubules in TNTs whose diameter exceeds 100 μm [25,28,29]. Drugs which cause F-actin 

depolymerisation prevent formation of TNTs [30]. Tunnelling nanotubes seem to be a very secure 

and directed way of transporting signalling molecules between cells organised without the leak of 

signalling molecules into the extracellular space. The diameter of TNTs reportedly varies from 20 to 

200 nm, with the length far exceeding cellular dimensions [31]. Some TNTs do not touch the 

substrate, thus making them highly flexible and mobile. Tunnelling nanotubes have no known 

unique biochemical markers but can be detected by microscopic methods such as electron (see 

above) and light [32] microscopy.

Lipid components have been shown to participate in the mechanism of communication 

between contacting cells (mostly organised by TNTs) [25,33]. It is known that in the lateral transport 

of molecules along the cell surface, lipid rafts play a key role in transmitting signals from receptors 

and EVs [34]. Participation of lipid rafts in intercellular communication is evident in mesothelioma 

cells contacting through TNTs that contain more lipid rafts than non-contacting cells [35].

The data on intercellular communication in the cardiovascular system are very scarce, 

particularly concerning the role of lipid rafts in this process. Later in more detail we will discuss the 

cross-talk between cardiac fibroblasts and contractile cells of the heart, which determines normal 

and pathological functioning of a heart [36]. In addition to this type of interaction the in vitro

communication organised by TNTs between cardiac myocytes and stem cells has been shown, the 

importance of which lies in the possibility of stem cell differentiation into cardiomyocytes [32]. The 

lipid component may be one of many critical factors of cell commuting devices at least based on the 

fact that sites of contacts with TNTs are enriched with lipid rafts [37]. B-cells forming TNT-like 

cytoneme, (filipodia-like tubular extension of plasma membrane with parallel actin filaments inside 

the thin tube that can project to other cells conveying signalling proteins), contain a significant 

portion of lipid domains essential for rafts [38]. Besides the role of rafts in a cell communication 

organised by TNTs, the rafts are important factors in the process of uptake of EVs by a tissue 

including myocardium. The numerous mechanisms for EVs uptake have been documented and lipid 

rafts were found to be involved in both clathrin- and caveolin-mediated endocytosis as a significant 

part of EVs absorption by a target cell [39]. In general, lipids (particularly, cholesterol) and lipid rafts 

are essential components necessary for normal myocardial contractile function and ischaemic 

tolerance. Depletion of cholesterol aggravates both cardiac performance and cardioprotective 

mechanisms [40]. Later, we will describe this issue in more detail when endothelial cell – contractile 

cell axis will be discussed.

Thus although intercellular communication processes are likely to be highly complex due to 

the cellular heterogeneity of tissues and organs, the diverse modes of intercellular communication 
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confers specificity, clarity of signal and compartmentalisation of signal. In the remaining sections of 

this review, we consider the various cell communication modes discussed above according to 

function, and we consider examples of processes in other cell types which may have mechanistic 

parallels within cardiovascular cells. 

To Kill: Intercellular Communication Lessons From Tumours and the Immune System

Heart failure with preserved ejection fraction may include inflammation in its aetiology 

underlying its distinct structural and functional changes [41]. Pro-inflammatory cytokines such as 

tumour necrosis factor (TNF)-α and profibrotic TGFβ, are augmented in the myocardium of such 

patients [42]. Inflammatory cells expressing CD3, CD11a and CD45 have been detected that are 

associated with oxidative stress in cardiomyocytes and endothelial cells due to pro-inflammatory 

cytokines [43]. The subsequent transdifferentiation of cardiac fibroblasts to myofibroblasts that 

produces more collagen together with lower activity of metalloproteases yields fibrosis that may 

thus promote diastolic dysfunction in these heart failure patients [43].

This as well as other data compels us to discuss the role of communication with and among 

immune cells in cardiovascular pathologies.  

The communication of immune with non-immune cells is organised by T-cells and antigen-

presenting cells (APC). T-cell activation occurs as a result of a complex process which requires the 

interaction of a T-cell with major histocompatibility complex (MHC) proteins and further secretion of 

regulatory or cytolytic factors [44]. Analogous to cell communication in the nervous system this was 

called the “immunological synapse”. Cell surface structures (e.g., T-cell receptor) regulating contact 

between the membranes of two cells are the bases of this type of communication yielding the 

transduction of the signal to the interior of a cell. T-cell activation consists of mostly three phases. 

The first phase is the T-cell polarisation when non-stimulated rounded, low motile T-cells with 

integrin adhesion molecules are held in an inactive state [45] after exposure to chemokines rapidly 

performs polarisation with formation of a front end, or lamellopodium, and a back end, or uropod 

[46]. The second phase is the initial adhesion organised by activated integrin triggering formation of 

actin-based cell protrusions enriched by T-cell receptors which form sensory contacts, subsequently 

immunological synapse signalling starts, and is sustained with immunological synapse maturation 

[47]. Interestingly, phenotypic changes in T-cells after their activation are associated with dramatic 

changes in mitochondrial function [48]. The pathological impact of leukocytes infiltrated in the tissue 

and relocated to future inflammation sites is well known. These cells cross the walls of the blood 

vessel starting from a layer of endothelial cells forming a first barrier for penetration [49]. The 
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transport of white blood cells through the endothelial barrier is a critical step for inflammatory 

processes driven by elevated cytokines and chemokines. Taken up from the blood stream, 

leucocytes first interact with receptors in the surface of endothelial cells causing leucocyte arrest 

and adhesion, and subsequent migration (diapedesis) across the pericyte sheath and basement 

membrane [50,51]. Every step of this pathway is organised by multiple factors providing cellular 

docking and cross-talk of leucocytes and endothelial cells. There are many reviews on mechanisms 

underlying this transfer (e.g., see [49]).

Exchange of molecular signals by smooth muscle cells and monocytes/macrophages may be 

an important step in atherogenesis. The cell dialogue between these cells results in modification of 

extracellular matrix composition and angiogenesis. Such communication may cause changes in the 

pattern of secretion of matrix proteins by smooth muscle cells which, in turn, may induce secretion 

by monocytes of some inflammatory angiogenic factors (such as VEGF and IL-1β). This cross-talk in 

later stages may sequentially activate some extracellular metalloproteases and induce rupture of the 

plaque causing atherothrombosis [52].

Cell death triggering may be a result of concerted communication between smooth muscle 

cells and endothelial cells with key vasoactive players such as NO and endothelin-1 [53]. Under 

pathological conditions, such cellular dialogue may be altered leading to a sustained increase of 

vascular contractility and abnormal vascular proliferation. The communication between smooth 

muscle cells and endothelial cells is not limited by paracrine signalling but may also include 

communication via myoendothelial junctions and EVs [54,55].

Intercellular communication during carcinogenesis includes pathogenic stimulus and 

chronic inflammation, similar to many cardiac pathologies. The surface proteoglycan layer 

(glycocalyx) plays the main role in receiving primary information on the stimulus in cancer cells [56]; 

similarly in the heart it regulates a vascular endothelium response to physiological or pathological 

signals [57]. The transmission of the information involves extracellular matrix, gap junctions and 

other adhesion systems (reviewed in [58,59]). Cellular communications in the cancer cells 

environment is another example of cellular cross-talks [60]. 

Among numerous relations between cells which surround cancer cells, thus forming a 

malignant tumour, we can recall the cross-talk when one talking partner is a fibroblast. Fibroblasts 

are relatively undifferentiated cells with a plastic phenotype [61,62]. Apparently, their potency to be 

converted into different phenotypes is determined by their microenvironment. Similar to the heart, 

the key process of tumorogenesis is the fibroblast activation in response to tissue injury and some 

stimuli yielding formation of a damage-associating phenotype. In this aspect, the parallelism 

between tumour and heart seems obvious since while activation of fibroblasts in a tumour results in 
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formation of the cancer stroma (plus inflammation), in a damaged heart it causes the cardiac 

remodelling as a result of fibrosis (plus inflammation) in an infarct zone and both events can be 

considered as deleterious for humans [63].

In a cell communication “vocabulary” which includes numerous chemical factors such as 

reactive oxygen species, cytokines, etc., another crucial chemical term which cells can “speak” with 

is mitochondrial DNA (mtDNA). It has been demonstrated that horizontal transfer of mtDNA from 

cell to cell may compromise respiratory function [64]. Since mtDNA is able to leave the cell [65], and 

this nucleic acid is known to be a component of the innate immune response, it is tantalising to 

suggest that mitochondrial DNA may constitute another novel mode or component of intercellular 

communication. Besides, transfer of mtDNA can contribute to the beneficial cardioprotective effects 

of mitochondrial transplantation demonstrated recently [66].

Some elements of communication through EVs and membrane lipid rafts are involved in 

viruses-host cell interactions. Viral infections are known to be associated with cardiac pathologies, 

such as myocarditis, pericarditis, and arrhythmias after infection with a dengue [67], West Nile [68]

viruses and other arboviruses [69]. Viral particles may, via similar communication mechanisms to EV, 

interact with a host cell. For instance, HIV carries a shell made of a lipid bilayer with entrapped 

proteins and RNA, with a size of viral particle ranging from 100 to 120 nm. The infection with HIV is 

highly dependent on lipid rafts on the cellular membrane and, specifically, on the cholesterol 

contained in the rafts [70]. In addition, lipid rafts determine HIV internalisation and also affect the 

progression of the infection, particularly the release of viral particles from endosomes and 

permeation to the cytosol. Thus it seems tentative to suggest that lipid rafts may also play a role in 

the intracellular sorting of exosomes, not unlike cholesterol-sequestering agents that promote the 

transport of exosomes toward the apical membrane of a trophoblast facilitating their release in 

maternal circulation instead of equivalent process toward a fetal circulation [70]. Similar data on the 

role of lipid rafts in the internalisation of coxsackie virus have been reported [71]. 

To Heal: Stem Cell Interactions

As discussed above, the interaction of stem cells with other cell types may underlie potential 

mechanistic roles underlying cell therapy. On the one hand, the interaction of stem cells, (both 

exogenous and intrinsic) with specific cells within "niches" [72] may determine the fate of stem cells, 

the path of differentiation, proliferative potential, and, ultimately, the regenerative efficiency. 

Impaired perception of stem cell signals from the cell environment may lead to unpredictable 

consequences, including malignancy [73,74] due to formation of teratomas.
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On the other hand, a growing number of recent studies address paracrine action (in the 

broadest meaning) of stem cells on the surrounding tissue. In this case, the signals of different origin 

can be transferred from stem cells to the cells of the organ, stimulating its regeneration, protecting 

it from damage or normalising the metabolism. In the framework of this concept, the stem cells 

were regarded as "cytokine factories". Indeed, it is known that they produce a significant number of 

biologically active molecules, such as TGF, VEGF, EGF, SDF-1, prostaglandin E, nitric oxide and many 

others [75]. These factors are released by a stem cell in the extracellular space and after binding to 

corresponding receptors of surrounding cells, they exert their biological effects while many of them 

may enter the bloodstream, causing systemic effects.

A significant portion of protective and regulatory effects of stem cells are associated with the 

microvesicles or exosomes released from them [76]. Such structures can contain various cytokines, 

and many other physiologically active components of cells, such as microRNAs, signal proteins and 

even organelles [14]. A great number of reviews with descriptions of the mechanics of these 

processes are available elsewhere including itemisation of signalling from stem cells, implemented 

via EVs(e.g., see [14,77-79].

Importantly, entrapment of an active compound within the vesicle solves the problem of 

signal dilution in the extracellular environment and it allows accurately directed delivery of signal to 

the targeted cells, since the surface of the exosomes can carry ligands, providing the affinity of the 

vesicles to specific cell types [80].

However, the greater specificity and efficiency of signal transfer between stem cells and 

differentiated tissue cells is provided by direct contact organised by TNTs. Tunnelling nanotubes 

were discovered in haematopoietic stem cells [81], between endothelial progenitor cells and 

cardiomyocytes [82], between mesenchymal stromal cells and cardiomyocytes [32], as well as 

between epithelial cells of the renal tubules and neurons [83]. To date, the structure referred to as 

TNTs, is described for many types of intercellular interactions, but in most cases, at least one of the 

partners is a stem cell [84]. Tunnelling nanotubes are a discrete cellular extension of cytoplasm, 

bounded by a plasma membrane which connects two cells delivering substances and signalling 

molecules that are transmitted through a medium or via EVs, but with far greater speed and 

efficiency than in the ways outlined above. However, the most intriguing result of such contact 

between stem and differentiated cells is the possibility that TNTs may transport cytosolic organelles, 

including mitochondria [25,84], which may change the metabolism of the recipient cell [66]. 

Evidence supports that such mitochondrial transfer within nanotubes [32,82], is distinct to each 

nanotube in that mitochondria can move only in one direction from cells which formed the TNT, to 

the cell which received the nanotube, but not vice versa [25]. In the case of stem cells, stem cells are 
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shown to be donors, rather than recipients of mitochondria, particularly in experimental models 

associated with cell damage. For example, transport of mitochondria from the multipotent 

mesenchymal stem cells (MMSC) into the epithelial cells of the lungs to protect them from 

endotoxin-induced death, maintained normal levels of ATP production and prevented lung injury in 

vivo [85]. Recently, the mechanism of mitochondria transport from stem cells into damaged 

epitheliocytes was partially resolved [86]. Finally, a recent study demonstrated that MMSC derived 

from induced pluripotent cells (iPS) were capable of transferring mitochondria to epithelial cells of 

the lungs, and could reduce the damage caused by a cigarette smoke [87]. However, although the 

majority of studies indicate positive effects of mitochondrial transport, sometimes donor 

mitochondria can have toxic effects [88]. Contact of stem and differentiated cells by TNTs has also a 

reciprocal effect on the stem cells. Thus, in some cases the contacts via TNTs elicited the 

differentiation of stem cells [32,83]. In other work, the transport of mitochondria via TNTs from 

smooth muscle cells have been reported to be the cause of increased proliferation of MMSC, 

whereas blocking the formation of TNTs abolished this effect [89]. The opposite effect was 

demonstrated when mature cardiomyocytes were co-cultivated with stem cells, extracted from fat 

or bone marrow. In this case, the transfer of mitochondria to cardiomyocytes caused their partial 

dedifferentiation [90]. Thus although conceptually and practically in its infancy, mitochondrial 

transplantation may afford rescue of cellular function [66].

To Regulate: Communication in Heart, Brain, Vasculature and Others

In the heart, cardiac myocytes and cardiac fibroblasts are roughly in equal proportion 

meaning that every myocyte borders one or more fibroblasts [91]. The heart is known to frequently 

undergo so-called cardiac remodelling as a result of disease and ageing which is associated with 

structural and electrical changes in both types of cells [92,93] and strongly depends on the cells’

communication. First of all, cross-talk between these cells is organised through exchange by 

paracrine signals (such as TNF, TGF, IL family, VEGF, ANG-2, endothelin-1 and others [2,94-96]). This 

kind of signalling can be deleterious for the heart tissue resulting in cardiac fibrosis [97]. At the same 

time, some excreted paracrine factors such as IL-33 and ST2 can be beneficial for the heart [98,99]. 

Also, paracrine factors excreted by cardiac fibroblasts can regulate electrical properties of myocytes 

through both direct and paracrine interaction [100-102]. One of the pathways involved in paracrine 

communication between cardiac myocytes and cardiac fibroblasts was suggested to involve 

pannexins-formed channels in the cellular membranes of these two types of cells [103,104]. 
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It is still under debate whether cardiac myocytes and fibroblasts can communicate through gap 

junctions in the heart in vivo, but under in vitro co-culturing conditions they do form this kind of 

junction [105]. This junctional communication is reportedly deleterious, resulting in 

arrhythmogeneity of fibrotic myocardial cultures due to expression of connexin43 in cardiac 

fibroblasts [106]. Junctional coupling of myocytes and fibroblasts has been demonstrated to 

modulate calcium fluxes which can also contribute to incidence of arrhythmias in fibrotic heart 

tissue [107]. Figure 1 schematically illustrates the deleterious outcome of interaction of cardiac 

myocyte with cardiac fibroblast organised by electrical, biochemical and biomechanical 

communication, in comparison to some beneficial effects of cardiac myocyte-stem cell interactions. 

More detailed mechanisms of the cell-to cell communication in heart are described elsewhere [59].

Neuron-glial interactions are also important in cellular cross-talking in the developing heart and in 

communication between cardiac ganglia and cardiac cells of the adult heart [108]. To emphasise the 

importance of communication between neuronal and non-neuronal cells (basically microglia and 

astroglia) within the entire cellular network in CNS, the term “Neurovascular unit” has been coined 

[109,110]. The unit consists of the brain major cell types, namely endothelial cells, astrocytes, 

neurons and their axons, and other supporting cells to integrate incoming information with further 

release of a proper response [111].

Although in the brain, astrocytes can protect neurons from a pathological impact [112], in 

contrast, impaired astrocytes can release molecular factors that selectively damage neurons [113]. 

Interestingly, mitochondria have been reported to be involved in the cross-talk between astrocytes 

and neurons when neurons release impaired mitochondria with their subsequent degradation in 

adjacent astrocytes [114]. This implies the importance of mitochondrial transfer between neuronal 

and non-neuronal cells. In addition, recent work has demonstrated that neurons and astrocytes 

exchange with healthy mitochondria in a unidirectional way: from astrocytes to neurons [115]. This 

phenomenon was observed under conditions of tissue ischaemia or ischaemia-simulated conditions 

causing cell damage and apparently the transfer of mitochondria to these neurons fulfilled a 

rescuing mission in overall neuron salvage process. This result is comparable to the beneficial 

process of mitochondrial transplant injection to heal the damaged heart mentioned above 

[116,117]. There is also ultrastructural evidence for the  presence of EVs containing mitochondria in 

the astrocytes’ cultivation media [118] potentially being the source of release of mitochondria from 

astrocytes that may, via the bloodstream, reach target organs such as the heart.

Thus, in addition to the cross-talk of neural cells by neuromediators and chemokines, neural 

cells can also communicate through establishing direct contacts. In these cases, gap junctions are 

involved by mediating the rapid diffusion and distribution of ions and transmitters to neighbouring 
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cells [119,120]. A principle component of gap junctions is connexin 43 (Cx43), but they also may 

contain Cx30, Cx26, Cx40, Cx45 and Pannexin1 providing direct contact-based cellular cross-talks 

[121-124]. 

Another important cellular partnership we observe is between endothelial cells and other 

cells of the tissue. A very good example for such partnership is a cross-talk between glomerular 

endothelial cells and podocytes and mesangial cells which is very important in aetiology of diabetic 

kidney disease [125]. In patients with macroalbuminuria, both podocytes damage and endothelial 

cells injury were observed [126] . The endothelium injury is at least partially caused by a diabetes-

induced oxidative stress which activates production of heparinase, ultimately resulting in increased 

glomerular permeability [127]. Thus, diabetes compromises normal functioning of endothelial cells. 

Endothelial cells, podocytes and mesangial cells share the glomerular basement membrane on which 

they all sit. In normal kidney, endothelial cells transmit insulin-like growth factor (IGF) and 

hepatocyte growth factor (HGF) to podocytes and platelet-derived growth factor B (PDGFB) to 

mesangial cells, while mesangial cells send back to endothelial cells, TGF and integrin. In the 

diabetic kidney, these cross-talks are dramatically changed. The endothelial cells – podocytes 

vascular endothelial growth factor (VEGF) signalling, which is essential for normal kidney functioning, 

becomes altered [128,129]. New elements or old elements in enhanced levels, such as endothelin-1 

(ET-1) [130], angiopoietins (Ang-1, Ang-2) [131] and TNF-α [132,133], are all implicated in renal 

injury. eNOS, another essential component of the renal cells cross-talk, when ablated, causes heavy 

albuminuria associated with podocytes injury [134]. Other factors such as prostanoids derived from 

activated cyclooxygenase also play a paracrine role in mediated podocytes injury [135]. Recent 

findings point to microRNAs (mir-143 and mir-145) as factors regulating interaction of endothelial 

cells with smooth muscle cells [136].

In the heart, besides earlier described communication between cardiac myocytes and 

fibroblasts, one of highest importance is the endothelial cell – contractile cell axis. The cardiac 

endothelial system is organised by a monolayer of cells covering cardiac cavities (endocardial 

endothelial cells) and the internal surface of the myocardial vascular system (vascular endothelial 

cells). Some of the factors providing communication between endocardial endothelial cells, vascular 

endothelial cells and cardiac myocytes are identical to those indicated for renal cellular 

communication. Significant attention in these links has been attracted to eNOS and its product NO, 

which is mostly formed by endothelial cells [137] but in some, although at much lower levels, by 

cardiac myocytes [138]. Expression of eNOS is modulated by numerous factors such as TGF, protein 

kinase C, TNF-α, HSP and others. NO is an essential factor necessary for normal cardiac functioning 

[139], however at high levels NO can cause pathological activation of guanylate cyclase yielding 
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cGMP which desensitises cardiac contractile elements to calcium ions [140]. NO activates G proteins 

(Gs and Gi) stimulating Ca-channels [141]. General targets for this second messenger are proteins 

which can undergo nitrosylation. Critical proteins involved in excitation-contraction, such as 

ryanodine receptor, can be directly phosphorylated by NO resulting in myocardial contractile 

activation [142]. Important to this regulatory signalling  are lipid rafts with their uneven distribution 

among planar and invaginated (caveolae) parts of the plasma membrane. Ion channel activities 

critical for shaping the cardiac action potential were found to be strongly dependent on the location: 

either being in caveolae or outside of it [143]. Importantly, there is an intracellular cross-talk 

between caveolae and mitochondria [144] which represents intracellular communication between 

the cell membrane and cellular organelles which is highly organised and proceeds with participation 

of G-proteins [145]. Ischaemic and pharmacologic preconditioning causes translocation of principle 

caveolae proteins, caveolin-1 and 3 from a cell surface to mitochondria affording a protection from 

ischaemia-reperfusion injury [146,147] (note, that among all caveolins caveolin-3 (Cav-3) is specific 

for striated muscle and certain smooth muscle cells). Caveolins regulate multiple cellular processes 

including cell transduction apparently through housing of numerous signalling molecules, e.g., G-

protein coupled receptors (GPCRs), thus regulating multiple associated proteins such as Gi, adenylate 

cyclase, and effector kinases [148]. It has been found that cardiac-specific caveolin 3 expression 

mimics protective ischaemic preconditioning via activation of GPCR/Gi signalling pathway [149]. The 

described picture outlines the main components participating in the communication pathway from 

one cell to the interior of another cell (e.g., to mitochondria with their important role in collecting 

survival signals [150]) to afford protection.

 As we have already mentioned, depletion of cholesterol aggravates pathological changes in 

cardiac performance and protective stress signalling including ischaemic tolerance. Gradual 

depletion of sarcolemmal cholesterol content results in significant changes in myocardial function 

and tolerance to ischaemia/reperfusion whereas disruption of caveolae (through deletion of 

caveolin 3) specifically modifies ischaemic tolerance without direct effect on basic cardiac 

performance [40]. In parallel, ischaemic preconditioning of the heart causes translocation to 

mitochondria of another principal component of caveolae, connexin-43 which also affords 

protection not observed in inactive connexin-43 systems [151]. The role of caveolae in NO signalling 

is critical since endothelial NO synthase activity is blocked by binding to caveolin-1 and activation of 

NO synthase is associated with the release from the inhibitory clamp of caveolin-1 [152].  Besides 

NO, endothelial cells and cardiomyocytes communicate by ET-1, angiotensin II, prostaglandin, 

peptide growth factors, neuregulin (reviewed in [153]) . While for normal modulation of contractile 

cells by endothelial cells, specific levels of such second messengers are optional, a significant 
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alteration of these levels may augment pathologies like myocardial infarction, ischaemia, 

hypertension, arrhythmias, congestive heart failure, and atherosclerosis [154-157].

In addition to gap and tight junctions, endothelial cells communicate with their neighbours through 

adherens junctions. In this type of junction their cytoplasmic surface is linked to the actin

cytoskeleton. They are expressed as bands forming a circle around the cell (zonula adherens) or as 

loci of joints to the extracellular matrix (adhesion plaques). Similar cell junctions (fascia adherence) 

were found in cardiac myocyte which form on the surface of cardiac myocyte a ribbon-like structure 

not long enough to completely circle the cell. Adherent junctions contain cadherins, α-catenin, -

catenin, p120 (δ-catenin), γ-catenin (reviewed in [158]).

To Rejuvenate: Cross-Talk Between Organs and Organisms

Cross-talk between organs is well illustrated by the data in studies on protection of the 

brain or heart (damaged during a stroke or infarct correspondingly) by a remote preconditioning of 

the kidney or limbs [159-163]. The concept of remote preconditioning has evolved into ‘remote 

conditioning’, a term that encompasses a number of related endogenous cardioprotective strategies, 

applied to remote organs before (remote ischaemic preconditioning), during (preconditioning), or 

after (postconditioning) acute myocardial infarction [164,165]. Remote organ-heart neuronal and 

humoral communications can afford protection to the heart against stresses (i.g., by erythropoietin 

synthesised in kidney and liver [166,167] or adenosine, bradykinin, stromal derived factor-1α and 

others (for review see [165])). In contrast, considering pathophysiological aspects, heart failure is 

often accompanied by a number of comorbidities of the kidney [168,169], liver [170,171] or other 

organs [172,173], and thus adverse communication may be involved. 

In the hierarchy of the biological communicational systems, the cross-talk between 

organisms joined together either artificially (such as in parabiosis [174]) or naturally (such as at 

pregnancy [175]) with at least partial unification of the blood systems, further demonstrate the 

potency of cross-talk between organs. Parabiosis is an example of a remote communication whereby

humoral factors circulate and transfer from one parabiotic subject to another, i.e., when only one 

parabiotic partner was exposed to low pO2, erythropoiesis was observed in both partners [176] due 

to induced synthesis of erythropoietin in both. In general, the parabiotic interaction has common 

features to the junctional connection of two cells. Both interactions can result in functional changes 

in both partners thus playing an either deleterious or healing/rejuvenating role (See Figure 2). In 

recent studies, the regenerative (possibly rejuvenating) effect of parabiosis on, skeletal muscles 

[177], liver [178] and brain [179-181] has been demonstrated. The study on rejuvenation of the 

ageing heart by using the parabiotic model is most intriguing [182]. It was shown that after four 
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weeks of exposure to the circulation of young mice, the aged heart showed significantly regressed 

cardiac hypertrophy and molecular remodelling while growth factor 11 (GDF11) simulated the 

positive outcome reached by parabiosis. In the parabiotic model, the organisms do not communicate 

through large vessels, although they are united by small vessels, mostly capillaries (by the way, 

young capillaries have been considered a rejuvenation factor [183]) which were suggested to serve a 

root for trafficking of rejuvenating factors including GDF11 from young parabionts. Recombinant 

GDF11 was shown to induce inhibition of phenylephrine-mediated hypertrophy in cardiac myocytes 

supporting the idea that cardiac myocytes are primary targets for GDF11 [182]. In addition, GDF11 

reversed impairments in aged muscle stem cells (satellite cells) [184] showing the high potential of 

this rejuvenating factor to regenerative therapy leading to improvements in cardiac performance 

[185]. However, due to methodological controversies [186] full experimental evidence supporting 

the role of GDF11 as a rejuvenating factor is currently incomplete. Similar to the many studies that 

have examined the multiple components of conditioned media for factors involved in stimulating 

stem cells, vascular or myocardial cells, or other cell types, communicating beneficial and adaptive 

intercellular signalling, such factors in parabiotic communication also remain a focus of research 

[187-189]. 

Conclusion

In the present review we have highlighted the importance of intercellular cross-talk mechanistic 

processes for homeostatic maintenance between differing neighbouring and distant cells during 

adaptation and survival as a tissue and organ. Such processes are highly diverse and are still being 

studied at a rudimentary level, mainly in experimental models and require considerable further 

research in order to fully determine their specific roles in normal physiology and pathology.  

Continued research in these basic processes will afford greater mechanistic insights into targeting 

disease aetiology and potential future therapeutic targets.
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Figures legends

Figure 1. Cardiac myocyte–fibroblast (left) and cardiac myocyte-stem cell (right) interaction in the 

heart. This includes electrical communication (through: 1, TNTs and 2, gap/adherence junctions); 

biochemical communication (through 3, EVs) and biomechanical communication (through 4, 

extracellular matrix). Some details can be found in [36]. While heart hypertrophy, arrhythmias and 

tissue fibrosis may result from interaction of cardiac myocyte with fibroblast, the interaction with 

stem cell can yield the healing effect through restoration of cellular bioenergetics and normalisation 

of electrical communication of cardiac myocytes along the tissue. 

Figure 2. Parabiotic (left) and paracytotic (right) interactions. First is organised by unified circulation 

and second is organised by TNTs connecting neighbouring cells.
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